

Yakima Regional Clean Air Agency INSTRUCTIONS FOR PERMIT APPLICATION

Use this sheet as a checklist to determine when your application is substantially complete.

• Each PERMIT APPLICATION for the construction, installation or establishment of a new air contaminant source, or modification of existing air pollution source or control equipment or permit, needs to be accompanied by the following information to be considered complete:

Included N/A

- □ □ Process flow sheets and equipment layout diagrams.
- □ □ Control equipment manufacturer, model number, size, serial numbers (for each piece of control equipment).
- Quantify average and maximum hourly throughput values, average yearly totals, and maximum concentrations for each pollutant.
- □ □ Applicant's calculation of the kinds and amounts of emissions for each emission point, materials handling operation or fugitive category (both controlled and uncontrolled).
- Plot plan including identification of proposed emission points to the atmosphere, distance to property boundaries, height of buildings and stack height above ground level.
- □ □ Identification of raw materials and/or product specifications (physical and chemical properties) and typical ranges of operating conditions as related to each emission point (toxic air contaminants require a separate summary); Material Safety Data Sheets (MSDS) should be included in the PERMIT APPLICATION for all compounds used.
- □ □ Identification of the methods/equipment proposed for prevention/control of emissions to the atmosphere.
- □ □ Information sufficient to demonstrate the ability of the emission controls proposed as being consistent with those provided in the applicable regulations (BACT/NSPS/RACT/NESHAPS/LAER analysis). See attached worksheet for typical layout of BACT analysis information.
- □ □ The kinds and amounts of emission offset credits proposed for assignment when operations are within a non-attainment boundary (see WAC 173-400-120 and 131).
- Estimates of the proposed project ambient impact under average and least favorable conditions where pertinent to PSD (WAC 173-400-720) or Toxic Air Pollutants (WAC 173-460) requirements.
- Additional information, evidence, or documentation as required by the Board of Directors, or the Control Officer, to show that the proposed project will meet federal, state and local air pollution control regulations.
- □ □ For applications that include equipment that has previously been approved, authorized or registered, a lapse is considered to have occurred if the registration fees are delinquent for more than one calendar year or the source has not operated within five years prior to the receipt of any required PERMIT APPLICATION (WAC 173-400-110).
- □ □ Applications that include previously approved or authorized equipment require that additional information regarding previous owners or approvals be provided so that YRCAA records can be updated. Equipment registered and/or approved for a given company cannot be authorized without a legal name change, purchase of company or equipment, or a legal contract or subcontract to do business with or for the approved source. Responsibility for operation of authorized equipment rests with the registered source.
- □ □ All applications need to be accompanied with a completed SEPA checklist or SEPA determination. YRCAA may process the SEPA determination, if no other agency has done it. In this case a SEPA checklist with the proper fees must be submitted with the NSR application.
- The application transmittal shall conform to YRCAA review requirements wherever possible as detailed in the General Regulations for Air Pollution Sources (WAC 173-400).
- Each drawing, document, or other form of transmittal considered by the applicant to be proprietary and confidential must be suitably identified as confidential in red ink, and signed and dated by the applicant or its agent. Be aware that YRCAA follows the requirements in 40 CFR 2 for determination of confidentiality. YRCAA may not process company sensitive information as confidential.
- Orders of Approval (to construct, modify, or install) are issued for specific equipment or processes described in the application. Changes to the processes or control equipment are not allowed without new source review (Permit Application and Permit) if these changes result in an emission of a different type or an increase in emissions (WAC 173-400-110). Process equipment changes that result in decreased emissions require notification to YRCAA.
- The SIC code is identified as the four digit major group classification in the 1987 Standard Industrial Code Classification Manual listing of SIC codes can be obtained for free from the internet.
- Mail or deliver in person the completed application package to:

Yakima Regional Clean Air Agency 186 Iron Horse Court, Suite 101 Yakima, WA 98901-2303

- Application fees must accompany application for the application to be considered complete. An invoice will be sent out for the Engineering review after final decision on the application. Make checks payable to "Yakima Regional Clean Air Agency" or "YRCAA".
- The PERMIT APPLICATION package submitted must be complete. All applications are screened for completeness before processing. Applicants submitting incomplete application packages will be notified of their incomplete status and may result in a delay in processing the application.

Yakima Regional Clean Air Agency

PERMIT APPLICATION / NEW SOURCE REVIEW

BACT ANALYSIS WORKSHEET

Facility Name: Yakima Container Plant

Date: 9/6/2022

Image: Street of the street	CONTROL ALTERNATIVE	EMISSIONS	EMISSIONS REDUCTION (a)	INSTALLED CAPITAL COST (0)	TOTAL ANNUALIZED COST (c.g)	AVERAGE COST EFFECTIVENESS OVER	INCREMENTAL COST EFFECTIVENESS	ENERGY INCREASE OVER	TOXICS	ADVERSE ENVIRONMENTAL IMPACT
4) 5) 1 5) 1 1 4) 1 1 5) 1 1 4) 1 1 5) 1 1 4) 1 1 5) 1 1 4) 1 1 5) 1 1 4) 1 1 5) 1 1 4) 1 1 5) 1 1 4) 1 1 5) 1 1 4) 1 1 5) 1 1 4) 1 1 5) 1 1 4) 1 1 5) 1 1 4) 1 1 5) 1 1 6) 1 1 6) 1 1 7 1 1 8) 1 1 8) 1		[lhs/hr] & [tons/yr]	[tons/yr]	[\$]	j s	BASELINE (d) [5/ton]	(e) [S/(nn]	BASELINE (I) [m#iBtu/yr]	[Yes/No]	[Yes/No]
y y y y y) y) y) y) y) y) y) y) y) y) y) y) y) y) y) y) y) y) y) y) y) y) y)<	1)									
····································										
9) 4) 3) 9) 4) 3 9) 1 1 1 1 1 </td <td>Ź)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>_</td>	Ź)							_		_
4) 3) 5) Uncontrolled Baseline										
5) Uncontrolled Baseline	(ε									_
 S) Uncontrolled Baseline Incontrolled Baseli										
5) Uncontrolled Baseline	4									
	5) Uncontrolled Baseline									_

(a) Emissions reduction over baseline control level.
(b) Installed capital cost relative to baseline.
(c) Total annualized cost (capital, direct, and indirec Total annualized cost (capital, direct, and indirect) of purchasing, installing, and operating the proposed control alternative. A capital recovery factor approach using a real interest rate (i.e., absent inflation) is used to express capital costs in present-day annual costs.

(d) Average cost effectiveness over baseline is equal to total annualized cost for the control option divided by the emissions reductions resulting from the uncontrolled baseline. (e) The optional incremental cost effectiveness criterion is the same as the average cost effectiveness criteria except that the control alternative is considered relative to the next most stringent alternative rather than the baseline control alternative.

(f) Energy impacts are the difference in total project energy requirements with the control alternative uncontrolled baseline expressed in equivalent millions of Btus per year

6 Assumptions made on catalyst life may have a substantial affect upon cost effectiveness.

Notes:

The number of alternatives to be evaluated will yary depending on application. Values for each variable should be provided as they are applicable. Use N/A if not applicable.

Emission rates are the expected or predicted emission rates.

Calculations should provide for a range of alternatives.

Emissions reduction should use estimated efficiency if actual efficiency is unknown - should so state.

Attach worksheets as necessary to substantiate above values.

NSRP	-13-	JP-	- 23
------	------	-----	------

-1

	DEREIVEN
CLEAN AIR AGENCY	JAN 2 2 2024 Vin Email to HT 186 Iron Horse Court, Suite 101. Yakima, WA. 98901 Phone: (509) 834-2050 Fax: (509) 834-2060
	Website: http://www.yakimacleanair.org
	Website. http://www.yakimacteanair.org
Pursuant to WAC 172 400 111(1) (c) on annihilation to und	Filing Fee: \$400.00
OFFICAL USE ONLY	complete until the permit application filling fee required by YRCAA has been paid.
YRCAA NSR No: NSR P - 13 - IP - 2023	Date Fee Paid: / in 2023 this
Received by: <u>HT via email</u> Filin	Date Fee Paid: <u>/ in 2023</u> this ng Fee: \$400.00 Pint of tall tonal requested addition is submitted as additional requested additional requested pocessing Fee \$400.00 1/24/2004
Review of the application will not begin, until the application fi	illing fee is paid. A surcharge fee for the time required for preparing
and processing the application for approval will be invoiced aft	er the permit to operate is issued.
	NSR) Application General Permanent Source
INSTALLATION OR ESTABLISHMENT	OF NEW AIR CONTAMINANT SOURCES
NSR Application is Required for Construction, In	stallation or Establishment of an Air Pollution Source
Replacement or Substantial Alteration of Emission Con	Or atrol Technology on an Air Pollution Source or Equipment
I. General Information:	
BUSINESS NAME Yakima Container Plant	
NATURE OF BUSINESS Manufacture of corrugated she	ets and containers
MAILING ADDRESS 600 W Ahtanum Road, Union Gap	WA 98903
FACILITY ADDRESS (if different): Same	
PHONE and FAX NUMBERS (509) 576-3122	Email: jose.ibarra@ipaper.com
TYPE OF PROCESS, EQUIPMENT, OR APPARATUS C	yclone, Baghouse Andrew Lange Oipaper. com
LIST OF AIR CONTAMINANT(S) WHICH WILL BE PRO	ODUCED AND/OR CONTROLLED TSP, PM10, PM2.5
ESTIMATED STARTING DATE: <u>MARCH / 202</u> ESTIMATED COMPLETION DATE: <u>MARCH / 4</u>	+ Requesting + Requesting 2024 Perised & June 14 2024 + Requesting
	-

Compliance with SEPA (State Environmental Policy Act) - Check One of the Options Below:

- □ A DNS or EIS has been Issued by Another Agency for this Project and a Copy is Attached.
- □ If no DNS or EIS Exists for this Project, a Completed Checklist for this Project and the SEPA Processing Fee are Attached. *YRCAA SEPA checklist is available by phone, or by our website.*
- $\hfill\square$ The city/county has established an exemption for this project.
- I certify that the SEPA has been satisfied or this project is exempt:

11/2	
/29 Date	Government Agency GAR
Previous NSR/A	Air Permits Number issued by YRCAA for the Facility, if any NSR-10-IP-16
Describe Input	to Output Process (Attach drawings, schematics, prints, or block diagrams) See attached support document
ESTIMATED (COSTS: OF BASIC SOURCE EQUIPMENT \$ 100,000 OF CONTAMINANT CONTROL APPARATUS \$ 100,000
	OF CONTAMINANT CONTROL APPARATUS \$ 100,000
Maxin Perce Opera	ction Output per Year (tons, pounds, etc) $7, / 38, 560$ $165/4r$ mum Output per Hour (tons, pounds, etc) $1,7/6$ $165/4r$ ntage of Production (%) Dec - Feb $257/.$ Mar - May $257/.$ Sep - Nov Jun - Aug $257/.$ Days/Wk atting Schedule: Hrs/Day 16 Days/Wk 52
	sions Estimations and Calculations:
1. Crite	Particulate (PM ₁₀ ,PM _{2.5}) PM10: 0.02 tons/year, PM2.5: 0.00 tons/year
	Volatile Organic Compounds
	Nitrogen Oxides
	Sulfur Oxides Carbon Monoxide
	Lead
2.	Toxic Air Pollutants (Name) Quantity (in gr/dscf, tons/yr, lbs/hr. ppm, etc.)

·			
	r Pollution Modeling		
	sults <u>Performed</u> by YC		
U.	imputer runitout Attacheurin I es int	No	
E <mark>missio</mark>			
. Stack		Inside Diameter (feet)	
		Gas Exit Velocity (fl/min)	
	Flow Rate (cfm)		
	Shared Stack? If a shared stack, identify process (es) or point(s) which share the stack.		
	Distance from Stack to Property Line		
2. Dischar	arge Point or points (if no stack or other than stack)		
	·	Inside Diameter (feet) 66 "	
		Gas Exit Velocity (fl/min)	
	Flow Rate (cfm) 62, 634		
	Shared discharge point? If a shared	l discharge point, identify process (es) or point(s) which	
	the discharge point. No disc	harge, Baybouse captores	
		, return air plumbed into 246	
	Distance from discharge point to Pr	operty Line Frest 160m South 260 m V	
. Fuel	Туре	operty Line <u>Fast 160ms</u> South 260m V. North 135m	
	% Ash	Unit of Measure (gal./cu.ft./etc.)	
	BTU per Unit of Measure	Consumption Units per Year	
	Maximum Consumption Units per l	Hour	
. Building	Iding Dimensions		
	Height (feet) may Le	ngth (feet) <u>560</u> Width (feet) <u>560</u>	

IV. Air Pollution Control Equipment:

	No change	ALC
Baghouse	Type_No change	Model #, Serial # <u>Classiner</u> 7920 ZJAF (1995)
		D (closed System) and PM10: D - Laborard System
	Bag Height (feet)	Bag Diameter (feet)
	Filter Area (feet squared) 471 S G C (-	Blower Flow Rate (cfm) <u>A 14</u>
	Polyester Filter Media Felt Screen, Plue 9	Dimensions (feet) 2 d × Up × 118
	Discharge Area Dimensions (feet)	n system
	Cleaning Mechanism (shake) (air psi) 90 - 1	oppsi Aic Pulse
	Other Data 520 bass	
Scrubber	Туре	Model #, Serial #
	Efficiency	
	Gas Differential Pressure (psi)	Liquor Differential Pressure (psi)
	Liquor Flow (gpm)	Discharge Area Dimensions (feet ²)
	Gas Flow (cfm)	Other Data
Cyclone	Type_No change	Model #, Serial # CY1812 (1977)
	Efficiency $\underline{M/A}$ PM ₂ : \underline{S}_{4}	ashouse of por and PM10: Baghouse All
	Gas Flow (cfm)	Discharge Area Dimensions (feet?) 6 to bag Luciese
	Other Data Trim Collection	no fuel just air velocity
Precipitator	Туре	Model #, Serial #
	Efficiency	
	Gas Flow (cfm)	Gas Velocity (ft/sec)
	Residence Time	Gas Differential Pressure (psi)
	Precipitation Rate (ft/sec)	Discharge Area Dimensions (feet ²)
	Other Data	
Ad/Absorp	Туре	Model #, Serial #
	Efficiency	
	Gas Flow	Gas Velocity (ft/sec)
	Gas Temp (degree F)	Bed Volume (ft ³)
	Bed Dimensions (feet)	Capacity (hours)
	Contaminant (lb/day)	Regeneration time (hours)
	~	

		Туре	Model #, Serial #
		Efficiency	
		Gas Flow (cfm)	Discharge Area Dimensions (feet)
		Other Data	
V.	Add	litional Information:	
	ï.	Attach Related Information on Ch	emicals or Materials that will be emitted. (MSDS Sheets, Company
		Information, etc.)	
		Note: Indicate how much quantity	are used per MSDSs
		\Box Yes. \blacksquare No, if not why? <u>No ch</u>	ange
	2.	Fugitive Dust Control Plan (Attac	h if Necessary)
	3,	Attach Operation and Maintenanc	e Manual of Pollution Control Equipment.
		□ Yes ⊠ No, if not, why? No ch	ange
	4.	Attach Vendor Information or Man	nufacturer's Instructions on Pollution Control Equipment.
		🗋 Yes 🖾 No, if not, why? <u>No cha</u>	ange
		on for YRCAA staff to enter the pren	Date
That - F	rie Lub	State other Neuropean state	Date
		orano, Site Manager	
Name a	und Titl	le of Individual Filling out Form:	
Name a	and Titl Name	le of Individual Filling out Form:	Andrew Lange EHS Manager
Name a	and Titl Name Signa	le of Individual Filling out Form: e (print)	Andrew Lange EHS Manager
Name a	and Titl Name Signa and Tit	le of Individual Filling out Form: e (print) Korkarta (1957) ature	Andrew Lange Etts Manager 1/15/24 nAbove:
Name a	and Titl Name Signa and Tit Name	le of Individual Filling out Form: e (print) ature tle of Contact Person, if Different that	Andrew Lange Etts Manager 1/15/24 n Above:
Name a	and Titl Name Signa and Tit Name Title	le of Individual Filling out Form: e (print) ESTRACT ETS Manager ature tle of Contact Person, if Different that e	Andrew Lange Etts Manager 1/15/24 n Above:
Name a	and Titl Name Signa and Tit Name Title and Tit	le of Individual Filling out Form: e (print) EBate EFS Anager ature tle of Contact Person, if Different tha e tle of the Responsible Official for the e Eric Lubrano	Andrew Lange Etts Manager 1/15/24 n Above:
Name a	and Titl Name Signa and Tit Name Title and Tit	le of Individual Filling out Form: e (print) EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	Andrew Lange Etts Manager 1/15/24 n Above:
Name a	and Titl Name Signa and Tit Name Title and Tit	le of Individual Filling out Form: e (print) EBate EFS Anager ature tle of Contact Person, if Different tha e tle of the Responsible Official for the e Eric Lubrano	Andrew Lange Etts Manager 1/15/24 n Above:
Name a	and Titl Name Signa and Tit Name Title and Tit	le of Individual Filling out Form: e (print) EBate EFS Anager ature tle of Contact Person, if Different tha e tle of the Responsible Official for the e Eric Lubrano	Andrew Lange Etts Manager 1/15/24 n Above:
Name a	and Titl Name Signa and Tit Name Title and Tit	le of Individual Filling out Form: e (print) EBate EFS Anager ature tle of Contact Person, if Different tha e tle of the Responsible Official for the e Eric Lubrano	Andrew Lange Etts Manager 1/15/24 n Above:
Name a	and Titl Name Signa and Tit Name Title and Tit	le of Individual Filling out Form: e (print) EBate EFS Anager ature tle of Contact Person, if Different tha e tle of the Responsible Official for the e Eric Lubrano	Andrew Lange Etts Manager 1/15/24 n Above:

Support Document and Rule Evaluation

Background Information

International Paper owns and operates a facility in Yakima, Washington. The Facility is primarily classified under Standard Industrial Classification (SIC) Code 2653 and North American Industry Classification System (NAICS) Code 322211 – Corrugated and Solid Fiber Boxes.

Facility Information:

International Paper, Yakima Facility 600 Ahtanum Road Union Gap, WA 98903

Contacts: Andrew Lange, EHS Manager, (509) 645-0332 andrew.lange@ipaper.com Eric Lubrano, Site Manager, (509) 576-3164, eric.lubrano@ipaper.com

Summary of Permitting Actions

The facility operates a cyclone and baghouse system to control PM emissions from corrugators, flexographic lines, shredders, and die cutters at the facility (New Source Review number NSRP-10-IP-16). The facility proposes to temporarily remove the baghouse from service to allow the installation of emergency explosion proof abort gates into the baghouse ducting. See **Attachment 1** for an equipment drawing that shows where the new bypass gate will be installed. Upon completion of the installation, the baghouse will be reconnected to the exhaust of the cyclone.

There will be no physical changes to the cyclone or the baghouse and the emergency explosion proof abort gates will not change the operation of the cyclone or the baghouse during normal operations. The abort gates are closed during normal operation and are designed to only open during an emergency such as a fire or explosion. The purpose of the abort gates is to protect personnel and equipment in the event of a fire or explosion.

During the approximately two-week period necessary to install the emergency explosion proof abort gates the cyclone will exhaust directly to the atmosphere without venting through the baghouse. During this period PM emissions will still be controlled by the cyclone but will not be controlled by the baghouse. Once the emergency explosion proof abort gates are installed, the baghouse will be re-connected and all emissions will once again be controlled by both the cyclone and the baghouse.

Regulatory Analysis

Rule Compliance Evaluation

WAC 173-400-040 GENERAL STANDARDS FOR MAXIMUM EMISSIONS

All sources and emissions units are required to meet the emission standards of this chapter.

Visible Emissions cannot exceed twenty percent opacity for more than three minutes in any one hour. Emissions from the corrugators, flexographic lines, shredders, and die cutters are not expected to exceed this threshold after control from the cyclones. The current permit specifies a zero percent opacity limit from the baghouse. For the duration of the temporary project, International Paper proposes a visible emissions limit of twenty percent opacity.

Fallout may not be deposited beyond the property. The facility will continue to comply with this requirement for the duration of the project.

The facility will continue to comply with the requirements applicable to fugitive emissions, odors, emissions detrimental to persons or property, sulfur dioxide, concealment and masking, and fugitive dust for the duration of the project.

WAC 173-400-070 EMISSION STANDARDS FOR CERTAIN SOURCE CATEGORIES

None of the standards in this section apply to corrugators, flexographic lines, shredders, and die cutters, cyclones, or baghouses.

WAC 173-400-110 NEW SOURCE REVIEW (NSR) FOR SOURCES AND PORTABLE SOURCES

This regulation applies to new and modified sources. The current operation of the cyclone and baghouse system is approved with conditions enforcing compliance with this regulation. The modification of the system by operating without the use of the baghouse is subject to this regulation, unless the modification qualifies for an exemption under Section 110(5).

Table 110(5) exempts modifications of existing emission units from NSR provided the actual emission increases are less than the specified thresholds, as shown below:

Pollutant	Exemption Level (tons/year)	Project Emissions (tons/year)	Exempt?
TSP	1.25	0.14	Yes
PM10	0.75	0.02	Yes
PM2.5	0.25	0.00	Yes

Emissions from this project are below exemption thresholds and NSR does not apply.

Attachment 1

Equipment Drawing

Yakima Regional Clean Air Agency Attn: Dr. Hasan Tahat ; Wade Porter 186 Iron Horse Court, Suite 101 Yakima, WA 98901

RE: International Paper, Yakima Facility Baghouse Emergency Abort Gates

Dear Hasan,

Please review the attached application to install emergency abort gates on the baghouse ducting. These emergency abort gates are being installed to protect personnel and equipment in the event of a fire or explosion. To complete this project, International Paper must disconnect the baghouse from the cyclone for approximately two weeks. Once the project is complete, the baghouse will be re-connected to the cyclone. Emissions during the project will be below all NSR thresholds.

This application package includes the following:

- NSR Application Form
- Application support document

Should you have any questions or comments, please contact myself

EHS Manager Andrew Lange andrew.lange@ipaper.com (509-654-0332) or

Plant Manager, Eric Lubrano; eric.lubrano@ipaper.com (509-576-3124).

Respectfully,

Andrew Lange EHS Manager